|
| 1 | +from abc import ABC, abstractmethod |
| 2 | +from dataclasses import dataclass, field |
| 3 | +from typing import Literal |
| 4 | +from numbers import Number |
| 5 | +import logging |
| 6 | + |
| 7 | +import numpy as np |
| 8 | + |
| 9 | +from cesnet_tszoo.data_models.dataset_metadata import DatasetMetadata |
| 10 | +from cesnet_tszoo.configs.base_config import DatasetConfig |
| 11 | +from cesnet_tszoo.utils.enums import FillerType, TransformerType, AnomalyHandlerType |
| 12 | +from cesnet_tszoo.utils.transformer import Transformer |
| 13 | +import cesnet_tszoo.utils.filler.factory as filler_factories |
| 14 | +import cesnet_tszoo.utils.transformer.factory as transformer_factories |
| 15 | +import cesnet_tszoo.utils.anomaly_handler.factory as anomaly_handler_factories |
| 16 | + |
| 17 | + |
| 18 | +@dataclass |
| 19 | +class ConfigEditor(ABC): |
| 20 | + """Used for choosing which values in config to modify.""" |
| 21 | + |
| 22 | + default_config: DatasetConfig |
| 23 | + default_values: list[Number] | dict[str, Number] | Number | Literal["default"] | None | Literal["config"] |
| 24 | + train_batch_size: int | Literal["config"] |
| 25 | + val_batch_size: int | Literal["config"] |
| 26 | + test_batch_size: int | Literal["config"] |
| 27 | + all_batch_size: int | Literal["config"] |
| 28 | + preprocess_order: list[str, type] | Literal["config"] |
| 29 | + fill_missing_with: type | FillerType | Literal["mean_filler", "forward_filler", "linear_interpolation_filler"] | None | Literal["config"] |
| 30 | + transform_with: type | list[Transformer] | np.ndarray[Transformer] | TransformerType | Transformer | Literal["min_max_scaler", "standard_scaler", "max_abs_scaler", "log_transformer", "robust_scaler", "power_transformer", "quantile_transformer", "l2_normalizer"] | None | Literal["config"] |
| 31 | + handle_anomalies_with: type | AnomalyHandlerType | Literal["z-score", "interquartile_range"] | None | Literal["config"] |
| 32 | + create_transformer_per_time_series: bool | Literal["config"] |
| 33 | + partial_fit_initialized_transformers: bool | Literal["config"] |
| 34 | + train_workers: int | Literal["config"] |
| 35 | + val_workers: int | Literal["config"] |
| 36 | + test_workers: int | Literal["config"] |
| 37 | + all_workers: int | Literal["config"] |
| 38 | + init_workers: int | Literal["config"] |
| 39 | + requires_init: bool = field(default=False, init=False) |
| 40 | + |
| 41 | + def __post_init__(self): |
| 42 | + self.logger = logging.getLogger("config_editor") |
| 43 | + |
| 44 | + if self.default_values == "config": |
| 45 | + self.default_values = self.default_config.default_values |
| 46 | + else: |
| 47 | + self.requires_init = True |
| 48 | + |
| 49 | + if self.preprocess_order == "config": |
| 50 | + self.preprocess_order = self.default_config.preprocess_order |
| 51 | + else: |
| 52 | + self.requires_init = True |
| 53 | + |
| 54 | + if self.train_batch_size == "config": |
| 55 | + self.train_batch_size = self.default_config.train_batch_size |
| 56 | + if self.val_batch_size == "config": |
| 57 | + self.val_batch_size = self.default_config.val_batch_size |
| 58 | + if self.test_batch_size == "config": |
| 59 | + self.test_batch_size = self.default_config.test_batch_size |
| 60 | + if self.all_batch_size == "config": |
| 61 | + self.all_batch_size = self.default_config.all_batch_size |
| 62 | + |
| 63 | + if self.fill_missing_with == "config": |
| 64 | + self.fill_missing_with = self.default_config.filler_factory.filler_type |
| 65 | + else: |
| 66 | + self.requires_init = True |
| 67 | + |
| 68 | + if self.create_transformer_per_time_series == "config": |
| 69 | + self.create_transformer_per_time_series = self.default_config.create_transformer_per_time_series |
| 70 | + else: |
| 71 | + self.requires_init = True |
| 72 | + |
| 73 | + if self.partial_fit_initialized_transformers == "config": |
| 74 | + self.partial_fit_initialized_transformers = self.default_config.partial_fit_initialized_transformers |
| 75 | + else: |
| 76 | + self.requires_init = True |
| 77 | + |
| 78 | + if self.transform_with == "config": |
| 79 | + if self.default_config.transformer_factory.has_already_initialized: |
| 80 | + self.transform_with = self.default_config.transformer_factory.initialized_transformers |
| 81 | + else: |
| 82 | + self.transform_with = self.default_config.transformer_factory.transformer_type |
| 83 | + else: |
| 84 | + self.requires_init = True |
| 85 | + |
| 86 | + if self.handle_anomalies_with == "config": |
| 87 | + self.handle_anomalies_with = self.default_config.anomaly_handler_factory.anomaly_handler_type |
| 88 | + else: |
| 89 | + self.requires_init = True |
| 90 | + |
| 91 | + if self.train_workers == "config": |
| 92 | + self.train_workers = self.default_config.train_workers |
| 93 | + if self.val_workers == "config": |
| 94 | + self.val_workers = self.default_config.val_workers |
| 95 | + if self.test_workers == "config": |
| 96 | + self.test_workers = self.default_config.test_workers |
| 97 | + if self.all_workers == "config": |
| 98 | + self.all_workers = self.default_config.all_workers |
| 99 | + if self.init_workers == "config": |
| 100 | + self.init_workers = self.default_config.init_workers |
| 101 | + |
| 102 | + def modify_dataset_config(self, dataset_config: DatasetConfig, metadata: DatasetMetadata): |
| 103 | + """Modifies dataset config based on passed values in constructor. Used by CesnetDataset classes when editing config values. """ |
| 104 | + |
| 105 | + if self.requires_init: |
| 106 | + self._soft_modify(dataset_config, metadata) |
| 107 | + self._hard_modify(dataset_config, metadata) |
| 108 | + dataset_config._validate_construction() |
| 109 | + else: |
| 110 | + self._soft_modify(dataset_config, metadata) |
| 111 | + |
| 112 | + @abstractmethod |
| 113 | + def _hard_modify(self, config: DatasetConfig, dataset_metadata: DatasetMetadata): |
| 114 | + config.default_values = self.default_values |
| 115 | + config.preprocess_order = self.preprocess_order |
| 116 | + config.partial_fit_initialized_transformers = self.partial_fit_initialized_transformers |
| 117 | + config.create_transformer_per_time_series = self.create_transformer_per_time_series |
| 118 | + config.filler_factory = filler_factories.get_filler_factory(self.fill_missing_with) |
| 119 | + config.transformer_factory = transformer_factories.get_transformer_factory(self.transform_with, self.create_transformer_per_time_series, self.partial_fit_initialized_transformers) |
| 120 | + config.anomaly_handler_factory = anomaly_handler_factories.get_anomaly_handler_factory(self.handle_anomalies_with) |
| 121 | + |
| 122 | + @abstractmethod |
| 123 | + def _soft_modify(self, config: DatasetConfig, dataset_metadata: DatasetMetadata): |
| 124 | + config._update_batch_sizes(self.train_batch_size, self.val_batch_size, self.test_batch_size, self.all_batch_size) |
| 125 | + config._update_workers(self.train_workers, self.val_workers, self.test_workers, self.all_workers, self.init_workers) |
0 commit comments